
Nuki Web API
Nuki APIs - Terms of Use
Version v.1.5.1
14.02.2024

INTRODUCTION 3
QUICK START GUIDE 3

1. Setup the device 3

2. Connect the device to Nuki Web 4

3. Activate the Nuki Web API 5

4. Apply for Nuki Advanced API access 5

5. Authenticate calls to the Nuki Web API 7

Types of authentication 7

1. OAuth 2 (Authorization Code Flow) 8

2. API Token 15

6. Configure webhooks with Advanced API access 17

Try the demo - Your first API call on Swagger 20

FEATURES 24
1. Check if a device is online 24

2. Lock & unlock a door 25

3. Invite a user 26

4. Create a keypad code 28

5. Check the battery status 28

6. Get the activity logs 28

Short Rental Use Cases 29

7. Check if a device has Smart Hosting 30

8. Create guest permissions with a limited access time 30

9. Create a keypad code with recurring access time 33

10. Invite a user without triggering Nuki invite email (via webhooks) 34

BEST PRACTICES 36
I. How can I check if an auth has been created successfully? 36

II. How often are the auths synced to the device? 37

III. When should I sync a device and when I should not? 37

IV. How should I set up my webhooks? 37

1

https://nuki.io/en/service/nukis-terms-of-use-apis/

CORE CONCEPTS 38
A. Convert Device ID from HEX to DECIMAL 38

B. OAuth 2.0 38

C. Authorization Code Flow 39

D. Bearer Token 40

E. Central & Decentral Webhooks 41

F. How to monitor Webhooks 42

G. API-triggered Webhook Responses 43

H. Device-triggered Webhook Responses 44

I. Rate Limits 52

DEFINITIONS 53
J. Scopes 53

K. Nuki Web API Endpoints 54

L. Smart Lock States 55

M. Smart Lock Actions 57

N. Door State Changes 58

O. Error Codes 58

HELP & SUPPORT 58
FAQs 58

Abbreviations & Wordings 59

HTTP Status Codes 60

Additional Resources 61

CHANGE LOG 61
API Versions 61

2

INTRODUCTION

Welcome to the Nuki Web API documentation. This API lets developers control and manage
Nuki devices like Smart Locks, Smart Doors, and Openers remotely. These devices need to
be connected to the internet either through a Nuki Bridge or built-in Wi-Fi.

The Nuki Web API securely sends commands to devices via HTTP/TLS connection, either
through the Nuki Bridge or directly to the Smart Lock Pro's Wi-Fi. Responses are then sent
back to Nuki Web.

All commands are executed using the server-stored Nuki Web Authentication Key. This means
Nuki Web works independently of other clients, like the Nuki App for iOS and Android.

At a very high level, to access the Nuki Web API:

● Connect Smart Lock to a Nuki Bridge, or use the in-built Wi-Fi in case of Pro devices to
bring the devices online

● Activate Nuki Web for the devices from the Nuki App

● Obtain an Authentication Key through one of the authentication methods (API token or
OAuth 2)

● Use this Authentication Key to integrate with the Nuki Web API

For detailed instructions, please refer to the Quick Start Guide in the following section.

QUICK START GUIDE
Learn how to easily connect and control your Nuki devices with the Nuki Web API.

1. Setup the device
The Nuki Web API can only be tested with real Nuki devices connected to a Nuki Web
account. Hence, first setup your Nuki devices in the Nuki App.

The devices should have online access. Thus, connect your devices to your WiFi via a Nuki
Bridge or use the built-in WiFi of the Smart Lock Pro. Once the device is connected, you can
validate this in the Nuki App settings under “Connection status” where the device should be
shown as connected to the server.

3

2. Connect the device to Nuki Web
Devices installed in the Nuki App can be connected to Nuki Web through an email address.
The Nuki Web platform provides remote access to the devices and also the ability to be
accessed via the Nuki Web API.

The steps to connect a device to the Nuki Web platform are:

● Tap on the desired Nuki device in the Nuki App and enter the “Settings”.

● Then go to "Features & Configuration". Here you can find the option "Activate Nuki
Web". Follow the instructions to connect the device to your Nuki Web account.

● If you do not have an account yet, a new one can be created in the process. Refer to
this article in the Nuki Help Center for more details.

● You can login to Nuki Web from here: https://web.nuki.io/

4

https://support.nuki.io/hc/en-us/articles/360016485718-Activate-Nuki-Web
https://web.nuki.io/

3. Activate the Nuki Web API
The Nuki Web API can be accessed from the Nuki Web platform.

The steps to connect to the Nuki Web API are:

● Login to Nuki Web with your registered email address.

● From the left-side Menu, access the “API” feature and accept the Terms of Usage of
APIs to activate the API.

● This gives access to the “General” Nuki Web API.

● In order to use webhooks or OAuth 2 for integration, you must apply for a request to
use the Nuki Advanced API Integration. However, this is subject to your use case.

4. Apply for Nuki Advanced API access
In order to use webhooks or OAuth 2 for integration, you must apply for a request to use the
Nuki Advanced API Integration. The Nuki Advanced API can be accessed only if your request
is approved by the Nuki Developer team.

● Login to Nuki Web, and access the API section. Here, under “Nuki Advanced API
Integration”, you will have an option to send a request for Advanced API access.

5

https://web.nuki.io/
https://nuki.io/en/service/nukis-terms-of-use-apis/

● While creating the request, select the “Type” based on your use case. For example,

○ If you need to use the API for short rental purposes, then select “Short Rental”.

○ If you need the client secret for OAuth 2 integration but without webhooks,
then select “Only OAuth2 API Secret”.

○ If you need to use the API for webhooks, and it is neither of the stated
purposes, select “Other” type.

6

● While you provide the details such as name, email, please ensure that you provide an
email that can be used to contact you and the Webhook URL you provide here must
exactly match the one that you use.

● Once the request is approved by the Nuki Developer team, you should be able to see
the “Nuki Advanced API Integration” section and the OAuth 2 secret.

5. Authenticate calls to the Nuki Web API
The calls to the Nuki Web API require appropriate authorization. This is done through the
“bearer token” which should be present in every call made to the API. There are two ways to
obtain a valid bearer token, which are described below. Integrators are suggested to adopt
the OAuth 2 authentication type.

Types of authentication

Authentication Type Description

1 OAuth 2 OAuth 2 (also referred to as OAuth 2.0) is the
industry-standard protocol for authorization. Use this
method

● when you are offering an application to your
end users which grants your application/server
the right to operate their Smart Locks

● when your users have no technical experience

7

and you want to offer a simple login to your
services without the need for the end user to
generate API tokens and copy them around

For example, a company providing short rental
services for hosts should implement OAuth 2 to asks
customers to login through Nuki Web account

For more details on the OAuth 2, refer to the Core
Concepts Section B: OAuth 2.0.

2 API Token Use this method only when you use the Nuki Web API
to access your own Nuki Web account, with your own
Smart Locks

For example, for personal use of the API integration
with Home Assistant

NOTE: We do not recommend going live with this
method as we plan to sunset this feature in the near
future.

1. OAuth 2 (Authorization Code Flow)

OAuth 2.0 is the industry-standard protocol for authorization. Authorization Code Flow is one
of the grant types of OAuth 2 and it is the most secure and widely used OAuth 2 flow for web
applications. Nuki Web uses OAuth 2 to grant client applications (by external integrators)
access to Nuki Web users’ devices without sharing passwords.

Below are the key steps for a client application to obtain the access token of a user through
the OAuth 2 Authorization Code Flow:

1.1 Client application implements an authorization code link

The client application provides the user with a link or button as a starting point. Upon clicking
the link or button, the client application has to send a request to the Authorization Server with
the following parameters:

https://api.nuki.io/oauth/authorize?response_type=code&client_id=C
LIENT_ID&redirect_uri=CALLBACK_URL&scope=SCOPES

Parameter Description Value

response_type The type of grant type that is
used.

value = “code” as Nuki Web uses
the authorization code flow

8

client_id The ID of the client that is
making the request.

CLIENT_ID = OAuth2 API Key
from Nuki Web > Menu > API
(refer to the image below)

redirect_uri The callback URL to which the
users will be redirected after
they successfully logged in. This
field is mandatory and has to be
set in Nuki Web. You can add
several URIs as comma
separated values, but it is not
allowed to contain wildcard
parameters.

CALLBACK_URL = OAuth2
redirect URL from Nuki Web >
Menu > API
(refer to the image below)

scope List of scopes that you want to
request from the user for your
application.

For example, SCOPES = account
smartlock smartlock.auth
smartlock.config
(refer to the Definitions Section J:
Scopes)

state
(optional)

A random value that is generated
by the requesting application to
prevent cross-site request
forgery (CSRF) attacks. If it is not
provided with the request, the
server will generate one.

For example, state =
"KJHg876HJHjklj9876HJkkl7sdf"

NOTE: All parameters need to be URL encoded in all the requests during the flow. Refer to
the Online URL encoder/decoder if needed.

Example Authorization Call:

https://api.nuki.io/oauth/authorize?response_type=code&client_id=v
7kn_NX7vQ7VjQdXFGK43g&redirect_uri=https%3A%2F%2Ftest.com&scope=ac
count%20smartlock%20smartlock.create%20smartlock.auth%20smartlock.
action%20smartlock.log%20smartlock.readOnly%20smartlock.config%20n
otification

9

https://meyerweb.com/eric/tools/dencoder/

1.2 User authorizes the client application

When the user clicks on the link or button within the client application, they should authorize
by entering their Nuki Web username and password and accepting the scopes mentioned.

10

1.3 Client application receives the authorization code

Upon successful authorization, the user will be redirected to the provided callback URL
(redirect URI) mentioned in 1.1, which contains the authorization code identified by “code”.

11

For example,

https://test.com/?code=LN6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirS
w.bz5xJmD4_SR4rzajiefv3kTlD4CfvRd55rjmwH7T7xM&scope=account+notif
ication+smartlock+smartlock.readOnly+smartlock.action+smartlock.au
th+smartlock.config+smartlock.log+offline_access&state=7eLK8cFTsqe
xBur4LBEFLAgMyZB5c8Hj

AUTHORIZATION_CODE =
LN6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.bz5xJmD4_SR4rzajiefv3kTlD4CfvRd55
rjmwH7T7xM

1.4 Client application receives the access token

The client application posts to the /oauth/token URL to exchange the authorization code
obtained in 1.3 to receive the access token. This access token can be used to access the
user’s Nuki Web account data.

Below is the curl command to request the access token:

curl -X POST -d 'client_id=CLIENT_ID client_secret=CLIENT_SECRET
grant_type=authorization_code code=AUTHORIZATION_CODE
redirect_uri=CALLBACK_URL' https://api.nuki.io/oauth/token

Parameter Description Value

client_id The ID of the client that is
making the request.

CLIENT_ID = OAuth2 API Key
from Nuki Web > Menu > API
(refer to the image below)

client_secret The secret key of the client that
is making the request (only
available after the advanced API
request is approved).

CLIENT_SECRET = OAuth2 API
Secret from Nuki Web > Menu >
API
(refer to the image below)

code The authorization code returned
in the redirect URL upon
successful user authorization.

AUTHORIZATION_CODE
obtained from the redirect URL
as mentioned in 1.3

redirect_uri The callback URL to which the
users will be redirected after
they successfully logged in. This
field is mandatory and has to be
set in Nuki Web. You can add
several URIs as comma
separated values, but it is not

CALLBACK_URL = OAuth2
redirect URL from Nuki Web >
Menu > API
(refer to the image below)

12

allowed to contain wildcard
parameters.

For example, the request can be:
curl --location 'https://api.nuki.io/oauth/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=authorization_code' \
--data-urlencode
'code=LN6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.bz5xJmD4_SR4rzaj
iefv3kTlD4CfvRd55rjmwH7T7xM' \
--data-urlencode 'scope=account smartlock smartlock.create
smartlock.auth smartlock.action smartlock.log smartlock.readOnly
smartlock.config notification' \
--data-urlencode 'client_id=v7kn_NX7vQ7VjQdXFGK43g' \
--data-urlencode 'client_secret=Mn2XAJ5A0hWfcF2BX3xo3G32UIdyaTe1'
\
--data-urlencode 'redirect_uri=https://www.test.com'

For example, the response from the authorization server will be:
{

"access_token":
"fCrFkSDhnXtO3YHeYog_jT6AwXxNtt3vKIDW-v9W4Go.tlN3vFYsaleGiGFbvxJdP
VKqAcDPzQF36EKRqQmH8K0",

"token_type": "bearer",
"expires_in": 3600,

13

https://test.com/?code=FU6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.ro5xJmD4_ZT4rzajiefv3kTlD4CfvRd55rjmwH7T7xU&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=7eLK8cFTsqexBur4LBEFLAgMyZB5c8Hj
https://test.com/?code=FU6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.ro5xJmD4_ZT4rzajiefv3kTlD4CfvRd55rjmwH7T7xU&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=7eLK8cFTsqexBur4LBEFLAgMyZB5c8Hj
https://www.test.com/?code=d69dc5bdfbae822707a3bbc3a8ea2f1a9f6053d5&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=T7C0iGGkm3sGOEqmxiMirmPKD59gy7Da

"refresh_token":
"RTQVsMYDk6eedwmY05_unczUIHPNxJOKsRyne4Kf_KY.RiCNJRQlv7XF4zQxk7dbw
QLMlDwfTlmD-EN2bOGQzNr",

"scope": "account notification smartlock smartlock.readOnly
smartlock.action smartlock.auth smartlock.config smartlock.log
offline_access"
}

The result is an access token that is valid for one hour (3600 seconds). The obtained
ACCESS_TOKEN can be used to make requests to the Nuki Web API.

For example,
curl -X GET --header 'Accept: application/json' --header
'Authorization: Bearer ACCESS_TOKEN'
'https://api.nuki.io/smartlock'

Since the access token expires in one hour, the authorization server also provides a refresh
token to renew the access token. The refresh token is valid for 90 days.

1.5 Client application uses the refresh token to renew the access token

After the access token expires, the API will provide an “Invalid Token Error”. Thus, you can use
the REFRESH_TOKEN obtained in 1.4 to get a new access token with the following URL:

curl -X POST -d
“grant_type=refresh_token&client_id=CLIENT_ID&client_secret=CLIENT
_SECRET&refresh_token=REFRESH_TOKEN”
https://api.nuki.io/oauth/token

For example, the request can be:
curl --location 'https://api.nuki.io/oauth/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=refresh_token' \
--data-urlencode 'client_id=v7kn_NX7vQ7VjQdXFGK43g' \
--data-urlencode 'client_secret=Mn2XAJ5A0hWfcF2BX3xo3G32UIdyaTe1'
\
--data-urlencode
'refresh_token=RTQVsMYDk6eedwmY05_unczUIHPNxJOKsRyne4Kf_KY.RiCNJRQ
lv7XF4zQxk7dbwQLMlDwfTlmD-EN2bOGQzNr'

For example, the response from the authorization server will be:
{

"access_token":
"NCIrFmY4c0yRaqKLsagNtOKO11GZdb8B5qhSuGnVaQEWc.hTMpRm6bsUZBI07XMLj
NPYSDz-J5_aW3sd59BTITZx1",

"token_type": "bearer",

14

"expires_in": 3600,
"refresh_token":

"4rtF2YVJo1CLW1mQrydksl47ZSGnY2rJbzkKBcWEjIXo.m41NMBwQleetajGfrdEl
w3_gnBM2ldo-VzK-B269pbW",

"scope": "account notification smartlock smartlock.readOnly
smartlock.action smartlock.auth smartlock.config smartlock.log
offline_access"
}

This refresh token can be used to use the user’s data securely. It is valid for 90 days, after
which it is regenerated when you request a new access token.

2. API Token

When you login to Nuki Web and access the API section, the “API tokens” feature is used to
create API tokens.

Click on “Generate API token” to create one. Copy the API token into the clipboard and store
it in a secure way. It gives permanent access to all rights you granted while creating the token.

Use it as the “Authorization: Bearer” in your API calls:
curl -X GET --header 'Accept: application/json' --header
'Authorization: Bearer API_token' 'https://api.nuki.io/smartlock'

API tokens do not expire, but they are destroyed when the password of the corresponding
Nuki Web account changes.

15

https://api.nuki.io/smartlock

16

6. Configure webhooks with Advanced API access
This section is relevant for integrators who want to receive webhooks. The prerequisite for
configuring webhooks is to apply for the Nuki Web Advanced API access as explained in the
Section 4: Apply for Nuki Advanced API access.

An integrator can choose between two workflows (explained in the Core Concepts Section D:
Central and Decentral Webhooks):

● Central - the integrator has a single distinct URL
● Decentral - the integrator has several different URLs

6.1. Steps to set up central webhooks:

● Upon getting the Nuki Advanced API request approved by the Nuki team, the
integrator can set up the central URL in the “Nuki Advanced API Integration” tab in the
API section of Nuki Web.

● The integrator must enable the “Webhook features to receive device-triggered
webhooks.

● The integrator needs to perform an authorization with OAuth2 Code flow, with the
scope “webhook.central”. Other scopes are optional, but without the webhook.central
scope, webhooks are not receivable.

● For example, the request to obtain the authorization code is:
https://api.nuki.io/oauth/authorize?response_type=code&client
_id=v7kn_NX7vQ7VjQdXFGK43g&redirect_uri=https%3A%2F%2Ftest.co
m&scope=account%20smartlock%20smartlock.create%20smartlock.au
th%20smartlock.action%20smartlock.log%20smartlock.readOnly%20
smartlock.config%20notification%20webhook.central

17

● Upon successful authentication, an authorization code is returned to the specified
redirect URI, which can be used to obtain an access code.

● To obtain an access token, call the POST request as shown in the example below:
curl --location 'https://api.nuki.io/oauth/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=authorization_code' \
--data-urlencode
'code=LN6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.bz5xJmD4_SR
4rzajiefv3kTlD4CfvRd55rjmwH7T7xM' \
--data-urlencode 'scope=account smartlock smartlock.create
smartlock.auth smartlock.action smartlock.log
smartlock.readOnly smartlock.config notification
webhook.central
' \
--data-urlencode 'client_id=v7kn_NX7vQ7VjQdXFGK43g' \
--data-urlencode
'client_secret=Mn2XAJ5A0hWfcF2BX3xo3G32UIdyaTe1' \
--data-urlencode 'redirect_uri=https://www.test.com'

● A returned access token ensures a valid central webhook registration. This concludes
the central webhook registration process. The access token is usable for further
actions using the Nuki Web API.

NOTE: Every central webhook POST contains a header field "X-Nuki-Signature-SHA256" with
the signature value of the signed body's payload. The JSON body is signed with the HMAC
SHA256 algorithm based on RFC2104, with the "Client Secret" as the signing key.

6.2. Steps to set up decentral webhooks:

● The integrator must ensure that the “Nuki Advanced API Integration” tab is active in
the API section of Nuki Web.

● The configured webhook url and webhook features are irrelevant, because for
decentral webhooks specific configuration steps are needed.

● The integrator needs to perform an authorization with OAuth2 Code flow, with the
scope “webhook.decentral”. Other scopes are optional, but without the
webhook.decentral scope, webhooks are not receivable.

● For example, the request to obtain the authorization code is:
https://api.nuki.io/oauth/authorize?response_type=code&client
_id=v7kn_NX7vQ7VjQdXFGK43g&redirect_uri=https%3A%2F%2Ftest.co
m&scope=account%20smartlock%20smartlock.create%20smartlock.au
th%20smartlock.action%20smartlock.log%20smartlock.readOnly%20
smartlock.config%20notification%20webhook.decentral

● Upon successful authentication, an authorization code is returned to the specified
redirect URI, which can be used to obtain an access code.

18

https://test.com/?code=FU6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.ro5xJmD4_ZT4rzajiefv3kTlD4CfvRd55rjmwH7T7xU&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=7eLK8cFTsqexBur4LBEFLAgMyZB5c8Hj
https://test.com/?code=FU6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.ro5xJmD4_ZT4rzajiefv3kTlD4CfvRd55rjmwH7T7xU&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=7eLK8cFTsqexBur4LBEFLAgMyZB5c8Hj
https://www.test.com/?code=d69dc5bdfbae822707a3bbc3a8ea2f1a9f6053d5&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=T7C0iGGkm3sGOEqmxiMirmPKD59gy7Da

● To obtain an access token, call the POST request as shown in the example below:
curl --location 'https://api.nuki.io/oauth/token' \
--header 'Content-Type: application/x-www-form-urlencoded' \
--data-urlencode 'grant_type=authorization_code' \
--data-urlencode
'code=LN6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.bz5xJmD4_SR
4rzajiefv3kTlD4CfvRd55rjmwH7T7xM' \
--data-urlencode 'scope=account smartlock smartlock.create
smartlock.auth smartlock.action smartlock.log
smartlock.readOnly smartlock.config notification
webhook.decentral
' \
--data-urlencode 'client_id=v7kn_NX7vQ7VjQdXFGK43g' \
--data-urlencode
'client_secret=Mn2XAJ5A0hWfcF2BX3xo3G32UIdyaTe1' \
--data-urlencode 'redirect_uri=https://www.test.com'

● To register a decentral webhook with this access token, place a PUT request to:
PUT https://api.nuki.io/api/decentralWebhook/

For example, the curl command is:
curl --location --request PUT
'https://api.nuki.io/api/decentralWebhook' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer
fCrFkSDhnXtO3YHeYog_jT6AwXxNtt3vKIDW-v9W4Go.tlN3vFYsaleGiGFbv
xJdPVKqAcDPzQF36EKRqQmH8K0' \
--data '{

"webhookFeatures": [
"DEVICE_STATUS",
"DEVICE_MASTERDATA",
"DEVICE_CONFIG",
"DEVICE_LOGS",
"DEVICE_AUTHS",
"ACCOUNT_USER"

],
"webhookUrl": "https://decentral123.webhook.at"

● The response contains the secret and the identifier of the registered webhook.
{

"id": 54294256,
"secret": "4aCV5rT556edR6zn8VBniq78PbZlfL8R",
"webhookUrl": "https://decentral123.webhook.at",
"webhookFeatures": [

"DEVICE_STATUS",
"DEVICE_MASTERDATA",

19

https://test.com/?code=FU6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.ro5xJmD4_ZT4rzajiefv3kTlD4CfvRd55rjmwH7T7xU&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=7eLK8cFTsqexBur4LBEFLAgMyZB5c8Hj
https://test.com/?code=FU6LcsYquiZG2Zbp4hqpRpbgguyFONJvDBtTvQQirSw.ro5xJmD4_ZT4rzajiefv3kTlD4CfvRd55rjmwH7T7xU&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=7eLK8cFTsqexBur4LBEFLAgMyZB5c8Hj
https://www.test.com/?code=d69dc5bdfbae822707a3bbc3a8ea2f1a9f6053d5&scope=account+notification+smartlock+smartlock.readOnly+smartlock.action+smartlock.auth+smartlock.config+smartlock.log+offline_access&state=T7C0iGGkm3sGOEqmxiMirmPKD59gy7Da

"DEVICE_CONFIG",
"DEVICE_LOGS",
"DEVICE_AUTHS",
"ACCOUNT_USER"

]
}

● If the PUT request to https://api.nuki.io/api/decentralWebhook is successful, decentral
webhooks are enabled. This concludes the decentral webhook registration process.

● To unregister a decentral webhook a DELETE request has to be made to:
DELETE https://api.nuki.io/api/decentralWebhook/{id}

For example, the curl command is:
curl --location --request DELETE
'https://api.nuki.io/api/decentralWebhook/54294256' \
--header 'Authorization: Bearer
fCrFkSDhnXtO3YHeYog_jT6AwXxNtt3vKIDW-v9W4Go.tlN3vFYsaleGiGFbv
xJdPVKqAcDPzQF36EKRqQmH8K0'

● All registered decentral webhooks can be obtained from:
GET https://api.nuki.io/api/decentralWebhook/

For example, the curl command is:
curl --location 'https://api.nuki.io/api/decentralWebhook' \
--header 'Authorization: Bearer
fCrFkSDhnXtO3YHeYog_jT6AwXxNtt3vKIDW-v9W4Go.tlN3vFYsaleGiGFbv
xJdPVKqAcDPzQF36EKRqQmH8K0'

Try the demo - Your first API call on Swagger
The Nuki Web API can be found under the calling URL https://api.nuki.io.

Swagger is a tool we use to automatically generate documentation from our OpenAPI
definition for visual interaction and easier testing for you. You can find the link to Swagger in
the Developer Forum.

The Swagger interface lists all API commands with its input and output parameters. It also
allows you to easily try out the API commands from the interface itself.

There is a section called “Models” which describes all the parameters in detail. Each endpoint
also has the model details to explain the parameters in detail. A sample model looks like this:

20

https://api.nuki.io
https://developer.nuki.io/

In order to make an API call from the Swagger interface, first authorize it with a client_id (i.e.
client_id = OAuth2 API Key from your Nuki Web > Menu > API). Select the scopes that you
would like to, and authorize.

21

Once it is authorized, you can try out any endpoint.

NOTE: Advanced API endpoints can only be used if you have an Advanced API request
approved.

For your first API call, you could try to lock your Smart Lock via the API.

● Under the Smartlock section, select the POST endpoint to lock a smart lock.
● Click on the “Try it out” button which allows you to enter the smartlockId (in decimal,

refer to the conversion from HEX to DEC here).
● Click “Execute” and see the response in the interface.
● You will also get the corresponding cURL call along with the response from the API.

22

Congratulations! You’ve executed your first API call.

You can also download a configuration file for the API at
https://api.nuki.io/static/swagger/swagger.json or directly open the file in Postman (File >
Import > Link) to create a Postman Collection for it.

23

https://api.nuki.io/static/swagger/swagger.json

FEATURES
This document lists the most commonly used features with Nuki Web API. In order to try out
the features, you must meet the below preconditions:

● You should obtain the authorization token through an appropriate method (refer to
Section 5: Authenticate calls to the Nuki Web API)

● Your device must be online
● You must convert your device ID {smartlockId} from Hex to Decimal (refer to Core

Concepts Section A: Convert Device ID from Hex to Decimal)
○ (or) call the GET /smartlock/ endpoint to get the SL ID from the API

1. Check if a device is online
The Nuki Web API commands will work only if a device is online. You can check the
“serverState” of the device to check if it is online or offline.

● If serverState = 0, it means the SL is online
● If serverState = 4, it means the SL is offline

API endpoint GET /smartlock/{smartlockId}

curl command curl -X 'GET' \
'https://api.nuki.io/smartlock/SMARTLOCK_ID \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN'

With the Advanced API access, you can also receive webhooks for lock state changes and
server state by selecting the “Device status” or “Device master data” Webook features in the
Nuki Advanced API Integration section of Nuki Web.

Webhook
response

{
"headers": {

"X-Nuki-Signature-SHA256": "xxx",
"X-Nuki-Signature": "xxx",
"Content-Type": "application/json;

charset=UTF-8"
},
"body": {

"feature": "DEVICE_STATUS",
"smartlockId": SMARTLOCK_ID,
"state": {

"mode": 2,
"state": 3,
"trigger": 0,
"lastAction": 1,
"batteryCritical": false,
"batteryCharging": false,
"batteryCharge": 32,

24

"keypadBatteryCritical": false,
"doorsensorBatteryCritical": false,
"doorState": 0,
"ringToOpenTimer": 0,
"nightMode": false

},
"serverState": 0,
"adminPinState": 0

},
"timestamp": "2024-01-05T09:05:14.200Z",
"path": "WEBHOOK_URL"

}

NOTE: If serverState = 1/2/3, the connection of the device to the Nuki Web account needs to
be reestablished.

2. Lock & unlock a door
Ensure to set the door handle type correctly for your door. You can do this in the Nuki App:
Features & Configuration > General > Choose door fitting (Knob, Lever or Lift-up Handle)
For more information on this, refer to Definitions Section L: Smart Lock actions.

To lock your door, you can directly call the lock command

API endpoint POST /smartlock/{smartlockId}/action/lock

curl command curl -X 'POST' \
'https://api.nuki.io/smartlock/SMARTLOCK_ID/action/
lock' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-d ''

To open your door with handle type Knob, you can directly call the unlock command

API endpoint POST /smartlock/{smartlockId}/action/unlock

curl command curl -X 'POST' \
'https://api.nuki.io/smartlock/SMARTLOCK_ID/action/
unlock' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-d ''

For the door with handle type Lever, the above command only unlocks but doesn’t open the
door (i.e. unlatch).

25

To unlock but not unlatch the door with handle type Knob, you can send an action = 1
(applicable for Smart Locks only)

API endpoint POST /smartlock/{smartlockId}/action/
{
“action”: 1
}

curl command curl -X 'POST' \
'https://api.nuki.io/smartlock/SMARTLOCK_ID/action'
\
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"action": 1

}'

If you would like to unlock and unlatch (i.e. open the door), you can send an action = 3

API endpoint POST /smartlock/{smartlockId}/action/
{
“action”: 3
}

curl command curl -X 'POST' \
'https://api.nuki.io/smartlock/SMARTLOCK_ID/action'
\
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"action": 3

}'

3. Invite a user
If you would like to provide access permissions to another user (family or friend) for your
devices, you can invite them to use the Nuki App. You can create a user with their email
address.

Firstly, create an account user

API endpoint PUT /account/user
{
"email": "john_doe@gmail.com",

26

"name": "john_doe",
"language": "en" //Available: en, de, es, fr, it, nl, cs, sk
}

curl command curl -X 'PUT' \
'https://api.nuki.io/account/user' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"email": "john_doe@gmail.com",
"name": "john_doe",
"language": "en"

}'

Then create an auth and assign the devices (one or more) by providing the accoundUserId
received in the response of the previous call

API endpoint PUT /smartlock/auth
{
"name": "john_doe",
"accountUserId": "1264915785", //for the user created above
"type": "0",
"smartlockIds": [
"18891899123",
"18891899124"

]
}

curl command curl -X 'PUT' \
'https://api.nuki.io/smartlock/auth' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"name": "john_doe",
"accountUserId": 1264915785,
"smartlockIds": [

"18891899123",
"18891899124"

],
"type": 0

}'

27

The user receives an email with an invitation code that needs to be redeemed in the Nuki
App within 48 hours.

4. Create a keypad code
Firstly, ensure a Keypad is paired with the Smart Lock. It is available in the “config” of a Smart
Lock as keypadPaired = true. The keypad code is a 6-digit code. It cannot contain “0” and
must not start with “12”. The keypad code is also unique per device.

To create a keypad code, auth type = 13

API endpoint PUT /smartlock/auth
{
"name": "test_keypad_code",
"type": "13",
"code": "252525",
"smartlockIds": [
"18891899123"

]
}

curl command curl -X 'PUT' \
'https://api.nuki.io/smartlock/auth' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"name": "test_keypad_code",
"smartlockIds": [

"18891899123"
],
"type": 13,
"code": 252525

}'

5. Check the battery status
To check the battery status of a device from the API, call GET /smartlock/{smartlockId} and
look under the “state” section for the “batteryCharge” parameter. The number indicates the
current % of battery or the remaining capacity of the battery in %.

6. Get the activity logs
To get the activity logs for a device, call GET /smartlock/{smartlockId}/log. You can get only a
maximum of up to 50 logs from the Nuki Web API, even though the logs up to 3 months are
stored and visible in Nuki Web for standard users.

28

With the Advanced API access, you can also receive webhooks for new activity log entries by
selecting the “Device Status” Webook feature in the Nuki Advanced API Integration section of
Nuki Web.

Interpretation of the logs:

Parameter Values

deviceType 0… smartlock 1/2, 1… box, 2… opener, 3… smartdoor, 4… smartlock 3/4

action 1 .. unlock, 2 .. lock, 3 .. unlatch, 4 .. lock'n'go, 5 .. lock'n'go with unlatch,
208 .. door warning ajar, 209 door warning status mismatch, 224 ..
doorbell recognition (only Opener), 240 .. door opened, 241 .. door
closed, 242 .. door sensor jammed, 243 .. firmware update, 250 .. door
log enabled, 251 .. door log disabled, 252 .. initialization, 253 .. calibration,
254 .. (activity) log enabled, 255 .. (activity) log disabled

trigger 0 .. system, 1 .. manual, 2 .. button, 3 .. automatic, 4 .. web, 5 .. app, 6 ..
auto lock, 7 .. accessory, 255 .. keypad

state 0 .. Success, 1 .. Motor blocked, 2 .. Cancelled, 3 .. Too recent, 4 .. Busy, 5
.. Low motor voltage, 6 .. Clutch failure, 7 .. Motor power failure, 8 ..
Incomplete, 9 .. Rejected, 10 .. Rejected night mode, 254 .. Other errors,
255 .. Unknown error

autoUnlock True if it was an auto unlock

source 1 .. Keypad code, 2 .. Fingerprint, 0 .. Default

error In case of any error, it contains the error message

Short Rental Use Cases
The Short Rental API has the same base URL as the Nuki Web API. Note that the Nuki Smart
Hosting subscription is necessary for using Smart Locks for short rental purposes. Integrators
who would like to use the API for short rental purposes are required to use the Advanced API
, by applying for an OAuth2 authorization token under the “Short Rental” category (refer to
Section 5: Authenticate calls to Nuki Web API).

Additionally, the Smart Locks must have an active Smart Hosting subscription. If the devices
do not have an active Smart Hosting subscription, the API (v.1.5.0. onwards) will return an error
message, as documented here.

29

https://nuki.io/wp-content/uploads/2023/06/SHS_Web_API_Endpoints_1.5.0.pdf

7. Check if a device has Smart Hosting
To check if a device (Smart Lock or Smart Door) has an active Smart Hosting subscription, call
GET /smartlock/{smartlockId}.

● If the device has an active Smart Hosting subscription, the response contains the
subscription details:
"currentSubscription": {

"type": "B2C",
"creationDate": "2023-08-11T08:14:11.981Z"

}
● If the device doesn’t have an active Smart Hosting subscription, the response contains

an "error": "No active Smart Hosting subscription for the Smart Lock, please get one!"

8. Create guest permissions with a limited access time
It is a good practice to create a user for every new booking and then create auths for all
guests in the booking. This ensures that the guests can access the vacation home either
through a keypad code or by using the Nuki App.

8.1 Create a guest user indicated by the booking number

API endpoint PUT /account/user
{
"email": "guest_email@gmail.com",
"name": "BOOKING123",
"language": "en" //Available: en, de, es, fr, it, nl, cs, sk, pl
}

curl command curl -X 'PUT' \
'https://api.nuki.io/account/user' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"email": "guest_email@gmail.com",
"name": "BOOKING123",
"language": "en"

}'

8.2 Create auths and assign the devices by providing the accoundUserId received in the
response of the previous call; booking from 20-Dec-2023 1PM to 25-Dec-2023 11AM

API endpoint PUT /smartlock/auth
{
"name": "BOOKING123 #1", // for guest 1

30

"accountUserId": "1264915785", // for the guest user created above
"type": "0",
"smartlockIds": [
"18891899123",
"18891899124"
],

"remoteAllowed": false,
"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedUntilDate": "2023-12-25T11:00:00.000Z"

}

curl command curl -X 'PUT' \
'https://api.nuki.io/smartlock/auth' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"name": "BOOKING123 #1",
"accountUserId": 1264915785,
"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedUntilDate": "2023-12-25T11:00:00.000Z",
"smartlockIds": [

"18891899123",
"18891899124"

],
"remoteAllowed": false,
"type": 0

}'

Key rules of creating auths:
● The time permissions can be provided as per the booking date so that the guests will

not be able to access the property outside the permissible time window.
○ The time should be provided in the UTC format
○ Auths are created in the same timezone as that of the Smart Lock, hence the

devices should be set to the local timezone
○ allowedFromDate should match the check-in date & time
○ allowedUntilDate should match the check-out date & time
○ Setting allowedUntilDate only disables the auth permission after expiry but

doesn’t delete it
● Locking/unlocking the devices remotely is not recommended for guests, hence you

can set remoteAllowed = false.
● If there are 2 guests, then it is recommended to create 2 auths as guests will receive

two separate invitation codes which can be redeemed in the Nuki App (within 48h).
● It is recommended to include the Openers too in the smartlockIds, so that they can be

opened from the Nuki App.

31

8.3 Create a keypad code that can be used by all guests

API endpoint PUT /smartlock/auth
{
"name": "BOOKING123",
"type": "13",
"code": "252525",
"smartlockIds": [
"18891899123",
"18891899124"
],

"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedUntilDate": "2023-12-25T11:00:00.000Z"

}

curl command curl -X 'PUT' \
'https://api.nuki.io/smartlock/auth' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"name": "BOOKING123",
"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedUntilDate": "2023-12-25T11:00:00.000Z",
"smartlockIds": [

"18891899123",
"18891899124"

],
"type": 13,
"code": 252525

}'

Key rules of creating keypad codes:
● The keypad code is a 6-digit code.
● It cannot contain “0” and must not start with “12”.
● The keypad code is also unique per device.
● If you have two devices, one Smart Lock and one Opener, both connected to different

keypads, it is recommended to create the same keypad code for both devices (as
shown above).

8.4 Delete the auths with the corresponding auth “id” after the booking expires

API endpoint DELETE /smartlock/auth
[
"647cfac64dd15972f2122e26",

32

"647cfac64dd15972f2122e34"
]

curl command curl -X 'DELETE' \
'https://api.nuki.io/smartlock/auth' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '[

"647cfac64dd15972f2122e26",
"647cfac64dd15972f2122e34"
]'

The clean up of auths is a recommended practice as a maximum of 200 keypad codes can be
created per Smart Lock version 3 onwards, and 100 codes per Smart Lock 1/2.

9. Create a keypad code with recurring access time
Let’s consider the use case where the housekeeping staff needs recurring access to the
vacation home, from Monday to Saturday, between 10AM to 2PM. It is not feasible to set up
new keypad codes for returning users, hence the access times should be set appropriately.

Create a keypad code with unlimited, recurring access time

API endpoint PUT /smartlock/auth
{
"name": "housekeeping",
"type": "13",
"code": "292929",
"smartlockIds": [
"18891899123",
"18891899124"
],

"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedWeekDays": 126,
"allowedFromTime": 600,
"allowedUntilTime": 840

}

curl command curl -X 'PUT' \
'https://api.nuki.io/smartlock/auth' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{

33

"name": "housekeeping",
"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedWeekDays": 126,
"allowedFromTime": 600,
"allowedUntilTime": 840,
"smartlockIds": [

"18891899123",
"18891899124"

],
"type": 13,
"code": 292929

}'

How to set the access time:
● allowedWeekDays is set via bitmask

Day Bitmask Value

Monday 01000000 64

Tuesday 00100000 32

Wednesday 00010000 16

Thursday 00001000 8

Friday 00000100 4

Saturday 00000010 2

Sunday 00000001 1

○ Monday - Saturday → 64+32+16+8+4+2 = 126
● allowedFromTime is set in minutes from midnight

○ 10AM → 10 hours from midnight i.e. 10*60 = 600
● allowedUntilTime is set in minutes from midnight

○ 2PM → 14 hours from midnight i.e. 14*60 = 840

10. Invite a user without triggering Nuki invite email (via webhooks)
This feature is apt for integrators who want to send the invite email through their PMS system,
and do not want to trigger the default Nuki invite email. The Nuki Web Advanced API can be
used to receive Nuki invite codes via the webhook and then be used within the PMS channel
to send out a customised invite email to their guests. The invite codes still need to be
redeemed from the Nuki App.

34

To invite a user through the advanced API, call the advanced auth creation endpoint

API endpoint PUT /smartlock/auth/advanced
{
"name": "BOOKING123 #2",
"accountUserId": "1264915785",
"type": "0",
"smartlockIds": [
"18891899123"
],

"remoteAllowed": false,
"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedUntilDate": "2023-12-25T11:00:00.000Z"

}

curl command curl -X 'PUT' \
'https://api.nuki.io/smartlock/auth' \
-H 'accept: application/json' \
-H 'authorization: Bearer ACCESS_TOKEN' \
-H 'Content-Type: application/json' \
-d '{
"name": "BOOKING123 #2",
"accountUserId": 1264915785,
"allowedFromDate": "2023-12-20T13:00:00.000Z",
"allowedUntilDate": "2023-12-25T11:00:00.000Z",
"smartlockIds": [

"18891899123"
],
"remoteAllowed": false,
"type": 0

}'

With the Advanced API access, you can receive an API-triggered webhook with the invite
code for the auth created

Webhook
response

{
"headers": {},
"body": {

"inviteCode": "ALE-OGB-VVA",
"detail": [

{
"smartlockId": 18891899123,
"success": true,
"id": "6597f599512b3f6c71b5b4ab",
"authId": 3431775

}
],

35

"type": "AuthCreation",
"requestId": "6597f599512b3f6c71b5b4a8",
"success": true

},
"timestamp": "2024-01-05T12:27:06.116Z",
"path": "WEBHOOK_URL"
}

When the guest redeems the inviteCode "ALE-OGB-VVA" in the Nuki App, they will have
permissions to lock/unlock the device during the configured access time.

BEST PRACTICES

I. How can I check if an auth has been created successfully?
If you are not using webhooks:
The Nuki Web API is asynchronous. When you send a command, you will get an immediate
OK response (i.e. 200) which means that the request has succeeded, but that doesn’t
guarantee that the client has executed the request successfully. Once the server has received
the API call, it will try to reach the Smart Lock and create the code (all the codes are stored on
the Smart Lock itself). This usually takes some seconds, and the device should be online.
Thus, call the GET /smartlock/auth endpoint within a few minutes to validate if the auth was
created successfully.

If you are using webhooks:
A webhook is triggered when an authorization is created (also when it is modified or deleted).
Example webhook response:

AuthResponse {
"feature": "DEVICE_AUTHS",

"deleted": false,
"smartlockAuth": {

"id": "65219648fe57075d71a6cb01",
"smartlockId": 11000009999,
"authId": 1,
"code": 982345,
"type": 13,
"name": "example",
… }

}

Thus, the best practice is to use webhooks to validate if auths are created successfully.

36

II. How often are the auths synced to the device?
When the auth is created through the API, it syncs it on the device immediately if the device is
online. If this fails for some reason, then there is a daily sync (runs once every 24 hours) which
syncs all the auths once per day (device must be online).

You can also perform a forced sync via the API by calling POST /smartlock/{smartlockId}/sync
but manual syncing should be avoided as it will drain the devices batteries and can lead to
errors when overloading the device or Nuki servers.

NOTE: Authorization changes or master data changes done via Nuki App or the BLE API, as
well as authorizations created via direct pairing will only trigger webhooks with the next Nuki
Web sync.

III. When should I sync a device and when I should not?
When to sync?

● The serverState seems to be not up-to-date.
● An unknown authorization ID in a log entry which needs to be mapped immediately to

not break a user interface.

When not to sync?
● In regular intervals “as a general fallback”: Webhooks should be used to avoid polling

the Web API and not as an additional feature (to even increase the load on the
servers).

● If automated 24-hour sync fails regularly (i.e. no "DEVICE_STATUS" webhook for >24
hours.): This is most likely an issue with the Bridge-connection which should be
addressed and not covered by more syncing.

IV. How should I set up my webhooks?
Monitor the webhook URL and map payload content according to your needs. Deactivate
unnecessary features to reduce the number of webhooks sent to a minimum.

If you want to explore all possible options you can start with all features activating and
clustering information received by the different types, as all webhook payloads contain the
feature which triggered them, e.g. feature = "DEVICE_LOGS". From there you can deactivate
unneeded features to reduce the number of webhook notifications and duplicates for your
integration.

Note that the changed values are not additionally highlighted in the payload and have to be
monitored on your side.

37

CORE CONCEPTS

A. Convert Device ID from HEX to DECIMAL
How to get the HEX Device ID in decimal format?

Device IDs are normally represented in the HEX (hexadecimal) format in the Nuki App or Web
and on the device itself. The Nuki Web API expects the Device IDs to be sent as an integer (or
decimal format). You can use a regular calculator (example) to convert the HEX ID to Decimal
ID, but before doing so, the type of the device has to be prefixed to the HEX ID.

For example, for a Smart Lock 2, prefix type ‘0’ to the Hex ID and convert it to decimal, as
shown below.

Device Type
displayed
Hex ID

calculated
Hex ID

(with prefix)

calculated
Decimal ID

Nuki Smartlock 1 or 2 0 1A2B3C4D 1A2B3C4D 439041101

Nuk Box 1 1A2B3C4D 11A2B3C4D 4734008397

Nuki Opener 2 1A2B3C4D 21A2B3C4D 9028975693

Nuki Smartdoor 3 1A2B3C4D 31A2B3C4D 13323942989

Nuki Smartlock 3
(Basic & Pro)

4 1A2B3C4D 41A2B3C4D 17618910285

Nuki Smartlock 4th
Gen (Basic & Pro)

4 1A2B3C4D 41A2B3C4D 17618910285

B. OAuth 2.0
OAuth 2.0 is the industry-standard protocol for authorization. OAuth 2.0 focuses on client
developer simplicity while providing specific authorization flows for web applications, desktop
applications, mobile phones, and living room devices. While we’ve provided the concept at a
very high level below, you can refer to more information on the OAuth2.0 website.

OAuth 2 defines four roles:

Role Description In the context of Nuki

1 Resource owner This is the user who is capable of
granting access to an application

Customer with a Nuki
Web account

38

https://www.rapidtables.com/convert/number/hex-to-decimal.html
https://oauth.net/2/

2 Client This is the application that wants to
access the user’s account

Client application of the
partner or integrator, for

e.g. Magenta

3 Resource server This is the server that hosts the
protected user accounts

Nuki authorization server

4 Authorization server This is the server that verifies the
identity of the user and then issues
access tokens to the application

Partner server

Below is the abstract protocol flow to obtain an access token (a unique security credential
that identifies the user):

There are multiple authorization grant types within OAuth2.0 but Nuki supports the
authorization code flow that is used with server side applications. Refer to Section 5.1
Authorization Code Flow for more information on Authorization Code Flow.

C. Authorization Code Flow
The Authorization Code Flow is the most secure and widely used OAuth 2 flow for web
applications.

At a high level:
● The user authorizes a client application (for example, Magenta, or Beds24) to provide

access to their Nuki Web account by clicking on a link or button within the application.
● The user is redirected to the Nuki authorization server.
● When the user authenticates themselves successfully, they grant permission (through

scopes) to your application.

39

● The Nuki authorization server generates an authorization code and redirects the user
back to your application with the authorization code.

● Your application exchanges the authorization code for an access token that can be
used to access the resource (in this case, user’s Nuki Web account).

● Since the access token is only valid for a short period of time, a refresh token is
provided that can be used to renew the access token.

D. Bearer Token
Bearer authentication (also called token authentication) is an HTTP authentication scheme
that involves security tokens called bearer tokens. The name “Bearer authentication” can be
understood as “give access to the bearer of this token.” The bearer token is a cryptic string,
usually generated by the server in response to a login request. The client must send this
token in the Authorization header when making requests to protected resources:
Authorization: Bearer <ACCESS_TOKEN>. You can find more information on the Swagger
website.

Example curl call:
curl -X GET --header 'Accept: application/json' --header
'Authorization: Bearer ACCESS_TOKEN'
'https://api.nuki.io/smartlock'

40

https://swagger.io/docs/specification/authentication/bearer-authentication/
https://swagger.io/docs/specification/authentication/bearer-authentication/
https://api.nuki.io/smartlock

E. Central & Decentral Webhooks
Nuki makes it possible to integrate the Nuki infrastructure to any third party integrator. This
empowers any company to implement their business needs in companionship with Nuki
devices. To asynchronously inform about any device change in a timely manner Nuki supports
webhooks.

There are two different kind of webhooks regarding the triggering entity:
● Device-triggered webhooks: A webhook created by the Nuki device itself, for e.g.

lock action from Nuki App, updated config due to a sync, etc.
● API-triggered webhooks: A webhook as response from an endpoint in the Nuki

Advanced API (https://api.nuki.io/#/AdvancedApi)

An integrator can choose between two workflows:
● Central webhooks: Nuki posts webhooks to one distinct URL
● Decentral webhooks: Nuki posts webhooks to several different URLs

Central webhook workflow
This workflow forwards webhooks to a single URL endpoint. This workflow is best suited for
environments with one receiving instance, which handles webhooks for all Nuki users.

Decentral webhook workflow
This workflow is for integrators which want to obtain webhooks on different URLs. This use
case is best suited for an integrator which has terminal-devices for each Nuki user separately.

41

https://api.nuki.io/#/AdvancedApi

F. How to monitor Webhooks

A webhook is always assigned to exactly one API key and stored as a log entry. The logs can
be viewed in Nuki Web or accessed via the endpoint
https://api.nuki.io/api/key/{apiKeyId}/webhook/logs.

To retrieve the logs for a webhook, call the GET endpoint below:
GET https://api.nuki.io/api/key/{apiKeyId}/webhook/logs
?id=[Optionally filter for older logs]
&limit=[Amount of logs (default: 50, max: 100)]
Header:
Content-Type: application/x-www-form-urlencoded;charset=UTF-8
Authorization: Basic [Base64enc("ClientID":"ClientSecret")]

● Only the last 300 messages are stored.
● The logs are returned in chronologically descending order.
● If no parameters are specified, the last max. 50 logs are returned.
● By specifying the "Id" parameter all logs that were after this specific Id are returned.

○ The Id is a hexadecimal representation of an Object ID.
● With the limit parameter you can set the number of logs returned from 1-100 (any other

value is ignored and the default value of 50 is assumed).

42

https://api.nuki.io/api/key/%7BapiKeyId%7D/webhook/logs
https://www.mongodb.com/docs/manual/reference/method/ObjectId/

In case you change the webhook URL or experience issues on your side, you can also directly
monitor sent webhooks via the logs at https://web.nuki.io/#/pages/web-api to be able to
quickly track down issues with undelivered webhooks.

Changing the webhook URL can also be done directly via the Web API with POST
/api/key/{apiKeyId}/advanced.

G. API-triggered Webhook Responses

When an Advanced API endpoint is called, a response is returned synchronously with a
request ID. At the same time, the request is processed asynchronously on the server and a
result is returned to a user defined webhook after the asynchronous process is completed.

There are two types of result responses:
● Response for a single device
● Response for multiple devices

Single result response:

For ‘LockAction', 'UnlockAction' and 'SmartlockAction’:
WebhookResponse {
type (WebhookType): type = ['LockAction', 'UnlockAction',
'SmartlockAction'],

43

https://api.nuki.io/#/AdvancedApi

requestId (string): Returned RequestId after Api was triggered,
smartlockId (long): The Id of the affected device,
success (boolean): True if the action was performed successfully,
errorCode (String): [Optional] Indicates the error (hexadecimal
representation) in case of failure
}

Multiple result response:

For 'AuthCreation':
WebhookResponse {
inviteCode (string): invite Code
detail: (DetailItem[])[
smartlockId (long): The Id of the affected device,
success (boolean): True if the creation was performed
successfully,
errorCode (Integer): [Optional] Indicates the error in case of
failure
],
type (WebhookType): type = ['AuthCreation'],
requestId (string): Returned RequestId after Api was triggered,
success (boolean): True if the action was performed successfully,
errorCode (Integer): [Optional] Indicates the error in case of
failure
}

H. Device-triggered Webhook Responses

The device-triggered webhooks work like push notifications. In total, there are 6 features and
the trigger events are described below:

Webhook feature Triggered when…

Device status the status of the device has changed

Device master data the master data of the device has changed or a sync has been
triggered

Device configs the config of the device has changed or a sync has been
triggered

Device logs an activity log entry is created

Device authorizations an authorization is created, modified or deleted

Account user a Nuki Web user is created, modified or deleted

44

1. Device status

StateResponse {
feature = "DEVICE_STATUS",
smartlockId (long): The Id of the affected device,
state (Smartlock.state): {
mode (integer): The smartlock mode: 0 .. uninitialized, 1 ..
pairing, 2 .. door (default), 3 .. continuous (type=2 only),
4 .. maintenance,
state (integer): The smartlock state: type=0/3/4: 0 ..
uncalibrated, 1 .. locked, 2 .. unlocking, 3 .. unlocked, 4
.. locking, 5 .. unlatched, 6 .. unlocked (lock 'n' go), 7 ..
unlatching, 224 .. Error wrong entry code, 225 .. Error wrong
Fingerprint, 254 .. motor blocked, 255 .. undefined; type=2:
0 .. untrained, 1 .. online, 3 .. ring to open active, 5 ..
open, 7 .. opening, 253 .. boot run, 255 .. undefined,
trigger (integer): The state trigger: 0 .. system, 1 ..
manual, 2 .. button, 3 .. automatic, 4 .. web (type=1 only),
5 .. app (type=1 only), 6 .. continuous mode (type=2 only), 7
.. accessory (type=3 only),
lastAction (integer): The action: type=0/3/4: 1 .. unlock, 2
.. lock, 3 .. unlatch, 4 .. lock 'n' go, 5 .. lock 'n' go
with unlatch; type=1: 1 .. unlock; type=2: 1 .. activate ring
to open, 2 .. deactivate ring to open, 3 .. open (electric
strike actuation),
batteryCritical (boolean): True if the battery state of the
device is critical,
batteryCharging (boolean): True if a Nuki battery pack in a
Smart Lock is currently charging,
batteryCharge (integer): Remaining capacity of a Nuki battery
pack in %,
keypadBatteryCritical (boolean): True if the battery of a
paired Keypad is critical,
doorsensorBatteryCritical (boolean): True if the battery of
a paired door sensor is critical,
doorState (integer): The door state: 0 .. unavailable/not
paired, 1 .. deactivated, 2 .. door closed, 3 .. door opened,
4 .. door state unknown, 5 .. calibrating, 16 ..
uncalibrated, 240 .. removed, 255 .. unknown,
ringToOpenTimer (integer): Remaining ring to open time; 0 if
ring to open is not active (type=2 only),
nightMode (boolean): True if night mode currently active},
serverState (integer): The server state: 0 .. ok, 1 ..
unregistered, 2 .. auth uuid invalid, 3 .. auth invalid, 4 ..
offline,

45

adminPinState (integer): The admin pin state: 0 .. ok, 1 ..
missing, 2 .. invalid}

2. Device master data

MasterDataResponse {
feature = "DEVICE_MASTERDATA",
deleted (boolean): flag if the device is deleted or not ,
smartlockId (long): The Id of the affected device ,
accountId (integer): The Id of the affected account ,
type (integer): Type of the device ,
authId (integer): The authorization id ,
name (string): The name of the smartlock ,
favorite (boolean): The favorite flag ,
firmwareVersion (integer, optional, read only): The firmware
version ,
hardwareVersion (integer, optional, read only): The hardware
version ,
serverState (integer): The server state: 0 .. ok, 1 ..
unregistered, 2 .. auth uuid invalid, 3 .. auth invalid, 4 ..
offline ,
adminPinState (integer): The admin pin state: 0 .. ok, 1 ..
missing, 2 .. invalid ,
creationDate (string, optional): The creation date ,
updateDate (string, optional): The update date

}

Firmware update
Notifications for changes to the firmware version of a device can be retrieved by setting
the feature "DEVICE_MASTERDATA". The value for firmware Version is provided as an
integer which has to be transformed into HEX format to show the current version.

For example:
firmwareVersion = 133135
133135 (DEC) = 2080F (HEX) = FW v. 2.8.15

Admin PIN errors
Changing the Admin PIN on a device also restricts all actions from the Nuki Web (API) for
which administration rights are needed. Therefore it is recommended to only change it
within the Nuki Web. Changes done outside of Nuki Web can be retrieved by setting the
feature "DEVICE_MASTERDATA".

The adminPinState can be used to track if functionality may be missing due to a change
here. Possible values of adminPinState:

● 0 .. ok
● 1 .. missing - no Admin PIN set; recommended to add one for security reasons
● 2 .. invalid - new Admin PIN needs to be set in Nuki Web

46

3. Device configs

ConfigResponse {
feature = "DEVICE_CONFIG",
smartlockId (long): The Id of the affected device,

config (Smartlock.config): {
name (string): The name of the smartlock for new users,
latitude (float): The latitude of the smartlock position,
longitude (float): The longitude of the smartlock position,
autoUnlatch (boolean): True if the door should be unlatched
on unlocking (knob) (only for type=1 and type=3),
liftUpHandle (boolean): True if the door has a lift up
handle, which is required to be lifted up to lock the door,
pairingEnabled (boolean): True if the pairing is allowed via
the smartlock button,
buttonEnabled (boolean): True if the button on the smartlock
is enabled,
ledEnabled (boolean): True if the LED on the smartlock is
enabled,
ledBrightness (integer): The brightness of the LED: 0 .. off,
5 .. max (only for type=1 and type=3),
timezoneOffset (integer): The timezone offset (in minutes),
daylightSavingMode (integer): The daylight saving mode: 0 ..
off, 1 .. european,
fobPaired (boolean): True if a fob is paired with the
smartlock,
fobAction1 (integer): The fob action if button is pressed
once: type=0/3/4: 0 .. none, 1 .. unlock, 2 .. lock, 3 ..
lock 'n' go, 4 .. intelligent (lock/unlocked based on the
current state); type=2: 0 .. none, 1 .. toggle ring to open,
2 .. activate ring to open, 3 .. deactivate ring to open, 7
.. open (electric strike actuation), 8 .. ring,
fobAction2 (integer): The fob action if button is pressed
twice,
fobAction3 (integer): The fob action if button is pressed 3
times,
singleLock (boolean): True if the smartlock should only lock
once (instead of twice) (only for type=1),
advertisingMode (integer): The advertising mode (battery
saving): 0 .. automatic, 1 .. normal, 2 .. slow, 3 ..
slowest,
keypadPaired (boolean): True if a keypad is paired with the
smartlock,
keypad2Paired (boolean): True if a keypad 2 is paired with
the smartlock,

47

homekitState (integer): The homekit state: 0 .. unavailable,
1 .. disabled, 2 .. enabled, 3 .. enabled & paired,
matterState (integer): The matter state: 0 .. not available,
1 .. disabled and no certificate available, 2 .. disabled, 3
.. enabled, 4 .. enabled & paired ,
timezoneId (integer): The timezone id ,
deviceType (integer): The device type of a Nuki device ,
wifiEnabled (boolean): Flag that indicates if the devices
internal WIFI module can be used},

advancedConfig (Smartlock.AdvancedConfig): {
totalDegrees (integer): The absolute total position in
degrees that has been reached during calibration,
singleLockedPositionOffsetDegrees (integer): Offset that
alters the single locked position,
unlockedToLockedTransitionOffsetDegrees (integer): Offset that
alters the position where transition from unlocked to locked
happens,
unlockedPositionOffsetDegrees (integer): Offset that alters
the unlocked position,
lockedPositionOffsetDegrees (integer): Offset that alters the
locked position,
detachedCylinder (boolean): Flag that indicates that the
inner side of the used cylinder is detached from the outer
side,
batteryType (integer): The type of the batteries present in
the smart lock: 0 .. alkali, 1 .. accumulator, 2 .. lithium,
autoLock (boolean): New separate flag with FW >= 2.7.8/1.9.1:
The Auto Lock feature automatically locks your door when it
has been unlocked for a certain period of time,
autoLockTimeout (integer): Seconds until the smart lock
relocks itself after it has been unlocked. FW < 2.7.8/1.9.1:
No auto relock if value is 0, FW >= 2.7.8/1.9.1: has to be
>=2 (defaults to 2 for values <2 if autoLock is set to true),
autoUpdateEnabled (boolean): Flag that indicates if available
firmware updates for the device should be installed
automatically,
lngTimeout (integer): Timeout in seconds for lock ‘n’ go
[5, 10, 15, 20, 30, 45, 60],
singleButtonPressAction (integer): The desired action, if the
button is pressed once: 0 .. no action, 1 .. intelligent, 2
.. unlock, 3 .. lock, 4 .. unlatch, 5 .. lock 'n' go, 6 ..
show status
doubleButtonPressAction (integer): The desired action, if the
button is pressed twice: 0 .. no action, 1 .. intelligent, 2
.. unlock, 3 .. lock, 4 .. unlatch, 5 .. lock 'n' go, 6 ..
show status,

48

automaticBatteryTypeDetection (boolean): Flag that indicates
if the automatic detection of the battery type is enabled,
unlatchDuration (integer): Duration in seconds for holding
the latch in unlatched position [1, 3, 5, 7, 10, 15, 20, 30
]},

openerAdvancedConfig (Smartlock.OpenerAdvancedConfig): {
intercomId (integer): The database ID of the connected
intercom
busModeSwitch (integer): Method to switch between data and
analogue mode [0,1],
shortCircuitDuration (integer): Duration of the short circuit
for BUS mode switching in ms,
electricStrikeDelay (integer): Delay of electric strike
activation in ms after lock action 3 'electric strike
actuation',
randomElectricStrikeDelay (boolean): Random
electricStrikeDelay (range 3000 - 7000 ms) in order to
simulate a person inside actuating the electric strike,
electricStrikeDuration (integer): Duration in ms of electric
strike actuation lock action 3 'electric strike actuation',
disableRtoAfterRing (boolean): Flag to disable RTO after
ring,
rtoTimeout (integer): After this period of time in minutes,
RTO gets deactivated automatically,
doorbellSuppression (integer): The doorbell suppression
bitmask: first bit (least significant) .. whenever the
doorbell rings and CM and RTO are inactive, second bit .. RTO
is active, third bit .. CM is active,
doorbellSuppressionDuration (integer): Duration in ms of
doorbell suppression (only in Operating mode 2 'digital
Intercom'),
soundRing (integer): The sound for ring: 0 .. no sound, 1 ..
Sound1, 2 .. Sound2, 3 .. Sound3,
soundOpen (integer): The sound for open: 0 .. no sound, 1 ..
Sound1, 2 .. Sound2, 3 .. Sound3,
soundRto (integer): The sound for RTO: 0 .. no sound, 1 ..
Sound1, 2 .. Sound2, 3 .. Sound3,
soundCm (integer): The sound for CM: 0 .. no sound, 1 ..
Sound1, 2 .. Sound2, 3 .. Sound3,
soundConfirmation (integer): The sound confirmation: 0 .. no
sound, 1 .. sound,
soundLevel (integer): The sound level,
singleButtonPressAction (integer): The desired action, if the
button is pressed once: 0 .. no action, 1 .. toggle RTO, 2 ..
activate RTO, 3 .. deactivate RTO, 4 .. toggle CM, 5 ..
activate CM, 6 .. deactivate CM, 7 .. open,

49

doubleButtonPressAction (integer): The desired action, if the
button is pressed twice: 0 .. no action, 1 .. toggle RTO, 2
.. activate RTO, 3 .. deactivate RTO, 4 .. toggle CM, 5 ..
activate CM, 6 .. deactivate CM, 7 .. open,
batteryType (integer): The type of the batteries present in
the smart lock: 0 .. alkali, 1 .. accumulator, 2 .. lithium,
3 .. fixed,

automaticBatteryTypeDetection (boolean): Flag that indicates
if the automatic detection of the battery type is enabled
autoUpdateEnabled (boolean): Flag that indicates if available
firmware updates for the deviceshould be installed
automatically},

smartdoorAdvancedConfig (Smartlock.SmartdoorAdvancedConfig):
{
lngTimeout (integer): Timeout in seconds for lock ‘n’ go [5,
10, 15, 20, 30, 45, 60],
singleButtonPressAction (integer): The desired action, if the
button is pressed once: 0 .. no action, 1 .. intelligent, 2
.. unlock, 3 .. lock, 4 .. unlatch, 5 .. lock 'n' go, 6 ..
show status,
doubleButtonPressAction (integer): The desired action, if the
button is pressed twice: 0 .. no action, 1 .. intelligent, 2
.. unlock, 3 .. lock, 4 .. unlatch, 5 .. lock 'n' go, 6 ..
show status,
automaticBatteryTypeDetection (boolean): Flag that indicates
if the automatic detection of the battery type is enabled,
unlatchDuration (integer): Duration in seconds for holding
the latch in unlatched position [1, 3, 5, 7, 10, 15, 20, 30
],
buzzerVolume (integer): The volume of the buzzer: 0 .. off, 1
.. low, 2 .. normal,
supportedBatteryTypes (integer): Set of supported battery
types: 0 .. alkali, 1 .. accumulator, 2 .. lithium, 3 ..
fixed, 254 .. automatic, 255 .. unknown,
batteryType (integer): The type of the batteries present in
the smart lock: 0 .. alkali, 1 .. accumulator, 2 .. lithium,
3 .. fixed, 255 .. unknown,
autoLockTimeout (integer): Seconds until the smart lock
relocks itself after it has been unlocked. No auto relock if
value is 0,
autoLock (boolean): The Auto Lock feature automatically locks
your door when it has been unlocked for a certain period of
time}

}

4. Device logs

50

LogResponse {
feature = "DEVICE_LOGS",
smartlockId (long): The Id of the affected device,
deviceType (integer): The device type: 0 .. smartlock and
box, 2 .. opener, 3 .. smartdoor,
name (string): The name,
action (integer): The action: 1 .. unlock, 2 .. lock, 3 ..
unlatch, 4 .. lock'n'go, 5 .. lock'n'go with unlatch, 208 ..
door warning ajar, 209 door warning status mismatch, 224 ..
doorbell recognition (only Opener), 240 .. door opened, 241
.. door closed, 242 .. door sensor jammed, 243 .. firmware
update, 250 .. door log enabled, 251 .. door log disabled,
252 .. initialization, 253 .. calibration, 254 .. log
enabled, 255 .. log disabled,
trigger (integer): The trigger: 0 .. system, 1 .. manual, 2
.. button, 3 .. automatic, 4 .. web, 5 .. app, 6 .. auto
lock, 7 .. accessory, 255 .. keypad,
state (integer): The completion state: 0 .. Success, 1 ..
Motor blocked, 2 .. Canceled, 3 .. Too recent, 4 .. Busy, 5
.. Low motor voltage, 6 .. Clutch failure, 7 .. Motor power
failure, 8 .. Incomplete, 9 .. Rejected, 10 .. Rejected night
mode, 254 .. Other error, 255 .. Unknown error,
autoUnlock (boolean): True if it was an auto unlock,
date (string): The log date,

openerLog SmartlockLog.OpenerLog: {
activeCm (boolean): Flag indicating if continuous mode was
active,
activeRto (boolean): Flag indicating if ring to open was
active,
source (integer): The cause of the activation of ring to open
or continuous mode: 0 .. doorbell, 1 .. timecontrol, 2 ..
app, 3 .. button, 4 .. fob, 5 .. bridge, 6 .. keypad,
flagGeoFence (boolean): Flag indicating a geo fence induced
action,
flagForce (boolean): Flag indicating a force induced action,
flagDoorbellSuppression (boolean): Flag indicating if doorbell
suppression was active}

}

5. Device authorizations

AuthResponse {
feature = "DEVICE_AUTHS",
deleted (boolean): flag if the auth is deleted or not,
smartlockAuth (SmartlockAuth): {

51

id (string):The unique id for the smartlock authorization,
smartlockId (integer): The smartlock id,
accountUserId (integer): The id of the linked account user,
authId (integer): The smartlock authorization id,
code (integer): The keypad code (only for type keypad),
type (integer): The type of the authorization: 0 .. app, 1 ..
bridge, 2 .. fob, 3 .. keypad, 13 .. keypad code, 14 ..
z-key, 15 .. virtual,
name (string): The name of the authorization (max 32 chars),
enabled (boolean): True if the auth is enabled,
remoteAllowed (boolean): True if the auth has remote access,
lockCount (integer): The lock count,
allowedFromDate (string): The allowed from date,
allowedUntilDate (string): The allowed until date,
allowedWeekDays (integer): The allowed weekdays bitmask: 64
.. monday, 32 .. tuesday, 16 .. wednesday, 8 .. thursday, 4
.. friday, 2 .. saturday, 1 .. sunday,
allowedFromTime (integer): The allowed from time (in minutes
from midnight),
allowedUntilTime (integer): The allowed until time (in
minutes from midnight),
creationDate (string): The creation date,
updateDate (string): The update date}

}

6. Account user

AccountUserResponse {
feature = "ACCOUNT_USER",
deleted (boolean): flag if the account user is deleted or
not,
accountUserId (integer): The account user id,
accountId (integer): The account id,
type (integer): The optional type: 0 .. user, 1 .. company,
email (string): The email address,
name (string): The name,
language (string): The language code,
creationDate (string): The creation date,
updateDate (string): The update date

}

I. Rate Limits
Nuki Web API is accessible publicly by thousands of developers. In order to limit the volume
of requests and prevent system abuse, limits are placed on the number of requests that can
be made to the API. Once a rate limit has been reached, further requests are rejected until the
limit expires.

52

Webhook error rate limit:
If the error rate on a webhook exceeds 5% in the last 24 hours, a warning email is sent to the
developer’s email address that is registered with the Nuki Web Advanced API. Therefore it is
important to set an email which is reachable and will be checked regularly.

A failed attempt is only registered as failed if the HTTP status code of the webhook is not 200
OK, 202 Accepted or 204 No-Content.

Nuki may suspend the webhooks service for an URL if the error rate is 100% for an extended
period of time.

DEFINITIONS

J. Scopes
A scope is a permission that is set on a token, a context in which that token may act. When
certain scopes are not set on a token, that token is not permitted to perform those operations.

Scope Scope Name Scope Description

account View and manage
account

● Edit the Nuki Web user
● Create, edit and delete Nuki Web

sub-users
● Create, edit and delete API keys

notification Notification ● Enable, disable, edit notifications for
Nuki devices

smartlock View and edit devices ● Add, view, edit and remove devices
to/from Nuki Web (API)

smartlock.readonly View devices ● Show Nuki devices in Nuki Web (API)

smartlock.action Operate devices ● Operate devices via Nuki Web (API)

smartlock.auth View and manage
authorisations

● Create, edit and delete
authorizations on a Nuki device via
Nuki Web (API)

smartlock.config Manage device
configuration

● Change device settings in Nuki Web
(API)

53

smartlock.log View activity logs and
get log notifications

● Retrieve logs from Nuki devices via
Nuki Web (API)

● Manage webhooks for the Web API

For example, a token with the scope:smartlock.readonly is permitted to only view the
devices, and the scope:smartlock is permitted to view as well as edit the devices.

K. Nuki Web API Endpoints
The Nuki Web API endpoints are documented in Swagger.
For your reference, the endpoints are provided below along with their usage.

Path Usage Available
endpoints

Description Scopes needed

Account
Nuki Web
account

POST,
GET, PUT,
DELETE

Handle Nuki Web
accounts and
sub-accounts, OTP
settings and password
reset

account

AccountSubsc
ription

Nuki Box
subscriptions

POST,
GET

Check and edit Nuki
Box subscription
tokens

account

AccountUser
Nuki device
users

POST,
GET, PUT,
DELETE

Create, edit and delete
(email based) Nuki
device users to which
authorizations can be
assigned

account,
smartlock.auth

Address
Nuki device
grouping

POST,
GET

Connecting an array of
Nuki devices to an
address object for Nuki
Box subscriptions and
short rental

account

AddressReser
vation

Short rental
integration

GET,
POST

Handle bookings for
connected listings from
short rental
integrations

account

AddressToken
Nuki Box
subscriptions

POST,
GET

Create and check Nuki
Box subscriptions

-

54

https://api.nuki.io/
https://api.nuki.io/#/Account
https://api.nuki.io/#/AccountSubscription
https://api.nuki.io/#/AccountSubscription
https://api.nuki.io/#/AccountUser
https://api.nuki.io/#/Address
https://api.nuki.io/#/AddressReservation
https://api.nuki.io/#/AddressReservation
https://api.nuki.io/#/AddressToken

ApiKey
Manage Web
API keys

POST,
GET, PUT,
DELETE

Create, edit and delete
API keys for the Nuki
Web API

account

Company
Nuki Partner
network

GET List companies from
Nukis partner network.

-

Opener
Opener
compatibility
check and
installation

GET List Opener compatible
intercoms per brand.

-

Service
Short Rental POST,

GET
Link, unlink and sync
available short rental
integration services

account

Smartlock
Nuki devices POST,

GET, PUT,
DELETE

Manage Nuki devices
and device settings

smartlock,
(smartlock.read
Only)

SmartlockAuth
Authorizations POST,

GET, PUT,
DELETE

Create, edit and delete
authorizations on Nuki
devices

smartlock.auth

SmartlockLog
Activity Log GET Retrieve log files from

Nuki devices
smartlock.log

Subscription
Nuki Box
subscriptions

GET Check for valid Nuki
Box subscriptions

account

L. Smart Lock States
Below are the definitions for the most important states of the devices, also documented here:
https://api.nuki.io/static/swagger/swagger.json

Name Smartlock (1/2/3) Opener Smart Door

55

https://api.nuki.io/#/ApiKey
https://api.nuki.io/#/Company
https://api.nuki.io/#/Opener
https://api.nuki.io/#/Service
https://api.nuki.io/#/Smartlock
https://api.nuki.io/#/SmartlockAuth
https://api.nuki.io/#/SmartlockLog
https://api.nuki.io/#/Subscription
https://api.nuki.io/static/swagger/swagger.json

mode The current operation
state of the Nuki Smart
Lock

0 uninitialized
1 pairing
2 door (default)
3 -
4 maintenance
5 -

The current operation
state of the Nuki Opener

0 uninitialized
1 pairing
2 door (default)
3 continuous
4 maintenance
5 -

The current operation
state of the Nuki Smart
Door

0 uninitialized
1 pairing
2 door (default)
3 failure
4 maintenance
5 test

state The current state of the
Nuki Smart Lock

0 uncalibrated
1 locked
2 unlocking
3 unlocked
4 locking
5 unlatched
6 unlocked (lock'n'go)
7 unlatching
253 boot run
254 motor blocked
255 undefined

The current state of the
intercom control within
Nuki Opener

0 untrained
1 online
2 -
3 rto active
4 -
5 open
6 -
7 opening
253 boot run
254 -
255 undefined

The current state of the
Nuki Smart Door

0 not activated
1 locked
2 unlocking
3 unlocked
4 locking
5 unlatched
6 unlocked (lock'n'go)
7 unlatching
253 boot run
254 motor blocked
255 undefined

trigger The trigger, that caused
the state change within
the Nuki Smart Lock

0 system (bluetooth)
1 manual
2 button
3 automatic
4 -
5 -
6 -
7 -

4 & 5 are Box-only

The trigger, that caused
the state change within
the Nuki Opener

0 system (bluetooth)
1 manual
2 button
3 automatic
4 -
5 -
6 continuous mode
7 -

4 & 5 are Box-only

The trigger, that caused
the state change within
the Nuki Smart Door

0 system (bluetooth)
1 manual
2 button
3 automatic
4 -
5 -
6 auto lock
7 external accessory

4 & 5 are Box-only

56

lastAction 1 unlock
2 lock
3 unlatch
4 lock'n'go
5 lock'n'go with unlatch
6 -
7 -

1 activate rto
2 deactivate rto
3 electric strike actuation
4 -
5 -
6 activate cm
7 deactivate cm

1 unlock
2 lock
3 unlatch
4 lock'n'go
5 lock'n'go with unlatch
6 -
7 -

M. Smart Lock Actions
Lock actions are used as a parameter in lock commands, and are also available as lastAction
for states or state changes.

Name Smartlock (1/2/3),
Smart Door

Opener Box

action 1 unlock
2 lock
3 unlatch
4 lock'n'go
5 lock'n'go with unlatch
6 -
7 -

1 activate rto
2 deactivate rto
3 electric strike actuation
4 -
5 -
6 activate cm
7 deactivate cm

1 unlock
2 -
3 -
4 -
5 -
6 -
7 -

Note: There are specific endpoints to lock or unlock a device. The unlock actions differ
slightly depending on the configuration of the door handle type - knob, handle or lever. Refer
to the below table to understand the outcome of a simple lock action command.

Action Outcome
(based on the door handle type)

Smart Lock Knob Smart Lock Handle/Lever Opener

/lock Lock Lock Deactivate rto and cm

/unlock Unlatch (i.e opens door) Unlock (i.e. doesn’t open
door)

Open

Refer to the minimum Firmware versions required to use the unlatch feature.

Nuki Device Firmware Version

57

https://api.nuki.io/#/Smartlock/postLock
https://api.nuki.io/#/Smartlock/postUnlock

Bridge 1.14.0/2.5.0 (or higher)

Smart Lock 1.0 1.8.0 (or higher)

Smart Lock 2.0 2.4.3 (or higher)

Opener 1.3.0 (or higher)

N. Door State Changes
Door states are supported for Smart Locks with activated door sensors, from Smart Lock 2.0
onwards. The possible values for door state changes are:

● 0 unavailable
● 1 deactivated
● 2 door closed
● 3 door opened
● 4 door state unknown
● 5 calibrating

All door state changes of a Nuki device can be monitored by setting the Webhook feature
"Device Status".

O. Error Codes

● Smart Lock Error Codes:
https://developer.nuki.io/page/nuki-smart-lock-api-2/2/#heading--error-codes

● Opener Error Codes:
https://developer.nuki.io/page/nuki-opener-api-1/7#heading--error-codes

HELP & SUPPORT

FAQs
1. What is the calling URL for Nuki Web API?

https://api.nuki.io
2. What is Swagger?

The Swagger UI is a tool we use to automatically generate documentation from our
OpenAPI definition for visual interaction and easier testing for you.

3. How can I test the endpoints of the Nuki Web API?
The Swagger interface allows you to easily try out the API commands from the
interface. The Swagger JSON file can be downloaded at

58

https://developer.nuki.io/page/nuki-smart-lock-api-2/2/#heading--error-codes
https://developer.nuki.io/page/nuki-opener-api-1/7#heading--error-codes

https://api.nuki.io/static/swagger/swagger.json or imported via Postman (File > Import >
Link) to create a collection for it.

4. Where are the API parameters documented?
Please look at the “Model” under the corresponding endpoint in Swagger for detailed
documentation. Refer to the Section: Try the Demo for more information.

5. Why do all endpoints contain “Smartlock” instead of other device names?
Endpoints containing "Smartlock" are used for all Nuki devices and are only kept that
way for legacy reasons. All supported device types use the same endpoints. Only the
Nuki Opener has additional ones for intercom compatibility.

6. What is OAuth 2?
OAuth 2 is an open standard for authentication. Nuki uses OAuth 2 to grant
applications access to Nuki Web users’ devices without sharing passwords.

7. What is the authorization bearer?
We use API token as the authorization bearer for calls to Nuki Web API

8. How can I get a client secret for using the “Code Flow”?
Refer to this section on “Apply for Nuki Web Advanced API” to obtain a client secret
for using the OAuth2 Authorization Code Flow.

9. Can I use more than one redirect URL?
You can add several redirect URLs as comma separated values.

10. Do you support the implicit flow of OAuth2?
The implicit flow is supported on Swagger. The access token expires after one hour.

11. How long is the OAuth2 Code flow authorization valid?
The access token expires in 1 hour, but the refresh token can be used to get a new
access token. The refresh token may be invalidated when the authentication happens
again with the same user account from a different device, application or session.

12. How can I convert my parameters in my requests to URL encoded parameters?
Refer to the Online URL encoder/decoder.

13. How is unlatch different from unlock?
The “Unlatch” feature just unlocks the door but doesn’t open it. Refer to Definitions
Section M: Smart Lock Actions to understand more about this.

14. Is there a limit on the maximum number of keypad codes created on a device?
One Keypad can support up to 100 codes.
SL1 & SL2 support up to 100 Keypad codes, SL3 up to 200 Keypad codes.

15. How can I differentiate between a Standard and Pro version?
In the device configuration, if wifiEnabled = true, it means that the device’s internal
WiFi module can be used to bring the device online. This means it is a Pro version.

Abbreviations & Wordings

Wording Abbreviation Description

Authorization auth Any permission created to access a Nuki device (i.e.
Nuki App user, keypad code, fob, fingerprint)
Note: The authorization is stored on the device itself.

59

https://api.nuki.io/static/swagger/swagger.json
https://meyerweb.com/eric/tools/dencoder/

Continuous Mode cm Nuki Opener Mode with Ring to Open continuously
activated

Keypad Code
(access code)

6-digit code that is used to open a door from the
Keypad connected to it
Note: Keypad codes cannot contain ‘0’ and cannot
start with ‘12’.

Lock 'n' Go lng Unlock and lock again automatically

Milliseconds ms One thousandth of a second

Ring to Open rto Nuki Opener State in which ringing the bell activates
the electric strike actuation

Smartlock SL Refers to a Nuki device - Smart Lock, Opener, Smart
Door or Box

Smart Lock ID SL ID The internal ID of a Nuki device

HTTP Status Codes
The following set of response codes may be returned when you send requests to the API.

Status Code Description

200 Successful operation

204 Ok
(API request succeeded but action may or may not be successful - more
info in the Best Practices section)

400 Invalid E-Mail address or name supplied
Email not in valid format
One time password empty
Bad Parameter
Invalid parameter supplied
Invalid parameter given

401 Not authorized
Not authorized or one time password wrong

402 Account not payed

403 Forbidden

404 Not found
Token not found

60

405 One time password is already enabled
Not allowed

409 E-Mail address already exists
Other account is already using the email
Parameter conflicts

423 Locked

426 Account upgrade required

429 Too many failed attempts

Additional Resources
Nuki Developer Forum: https://developer.nuki.io/
Nuki Support: https://support.nuki.io/hc/en-us

CHANGE LOG

API Versions

v.1.5.1
14.02.2024

● Merged Web API Webhooks V1.1 documentation into Nuki Web API documentation
● Updated Nuki Web API documentation with use cases

v.1.5.0
31.08.2023

● Deprecated v.1.4.0
● API endpoints will return an error message if the Smart Lock or Smart Door doesn’t

have an active Smart Hosting subscription

v.1.4.1
21.06.2023

● Updated API endpoints to enforce the usage of the Nuki Web API (also referred to as
Short Rental API) only with an active subscription for Nuki Smart Hosting

v.1.4.0
30.11.2021

● Added information on Smart Door and Smart Lock 3.0 (Pro) in the device ID section
● Added information on Smart Door and Smart Lock 3.0 (Pro) in the Smart Lock States

61

https://developer.nuki.io/
https://support.nuki.io/hc/en-us
https://nuki.io/wp-content/uploads/2023/06/SHS_Web_API_Endpoints_1.5.0.pdf
https://nuki.io/wp-content/uploads/2023/06/SHS_Web_API_Endpoints_1.5.0.pdf

v.1.3.3
22.06.2021

● Added information on how to use the Swagger configuration in 3rd party tools

v.1.3.2
22.03.2021

● /notification endpoint (used for push notifications and webhooks) was deprecated

v.1.1.1 (Webhooks documentation)
02.02.2021

● Changed the message digest algorithm used to HMAC SHA256. To avoid issues with
existing integrations a new header "X-Nuki-Signature-SHA256" has been added for
that with the former one ("X-Nuki-Signature") remaining usable till the end of May 2021.

v.1.3.1
14.12.2020

● Minor text and formatting updates

v.1.3.0
02.03.2020

● Introduced Simple lock actions for all use cases where the logic should be handled by
the device itself

● Added information on device ID usage
● Added Available endpoints to the Swagger part
● Added a description of the available Scopes to the API token section
● Added general naming conventions with Wording

v.1.2.1
14.01.2020

● Introduced the new section Advanced API integration to cover additional scopes
which can only be accessed after registration and verification

v.1.2.0
31.05.2019

● Added support for the Nuki Opener to the Web API
● Added chapters for Smart Lock States and Actions to show differences between the

Nuki Smart Lock and the Nuki Opener
● Noted changes and adding of new OpenerAdvancedSettings in section Swagger

interface

v.1.1.1
30.08.2018

62

https://api.nuki.io/#/Notification

● Fixed some missing links
● Fixed some typos and unclear text

63

